vp_suite.datasets.mmnist_on_the_fly
- class MovingMNISTOnTheFly(split, **dataset_kwargs)
Bases:
vp_suite.base.base_dataset.VPDataset
Dataset class for the dataset “Moving MNIST”, as firstly encountered in “Unsupervised Learning of Video Representations using LSTMs” by Srivastava et al. (https://arxiv.org/pdf/1502.04681v3.pdf).
Each sequence depicts two digits from the MNIST dataset moving linearly in front of a black background, occasionally bouncing off the wall and overlapping each other.
As opposed to the other Moving MNIST dataset, this one generates the digit sequences on-the-fly, randomly sampling digits and velocities. Besides the digit templates, no data is downloaded.
- ACTION_SIZE: int = 0
The size of the action vector per frame (If the dataset provides no actions, this value is 0).
- DATASET_FRAME_SHAPE: (<class 'int'>, <class 'int'>, <class 'int'>) = (64, 64, 3)
Shape of a single frame in the dataset (height, width, channels).
- DEFAULT_DATA_DIR: pathlib.Path = PosixPath('/home/runner/work/vp-suite/vp-suite/vp-suite-data/data/moving_mnist_on_the_fly')
The default save location of the dataset files.
- DEFAULT_N_SEQS = {'test': 1000, 'train': 9600, 'val': 400}
Default values for the dataset split sizes.
- IS_DOWNLOADABLE: str = 'Yes (MNIST digits)'
A string identifying whether the dataset can be (freely) downloaded.
- ON_THE_FLY: bool = True
If true, accessing the dataset means data is generated on the fly rather than fetched from storage.
- SPLIT_SEED_OFFSETS = {'test': <function MovingMNISTOnTheFly.<lambda>>, 'train': <function MovingMNISTOnTheFly.<lambda>>, 'val': <function MovingMNISTOnTheFly.<lambda>>}
passing the seed value to these functions guarantees unique RNG for all splits
- VALID_SPLITS = ['train', 'val', 'test']
The valid arguments for specifying splits.
- __init__(split, **dataset_kwargs)
Initializes the dataset loader by determining its split and extracting and processing all dataset attributes from the parameters given in dataset_kwargs.
- Parameters
split (str) – The dataset’s split identifier (i.e. whether it’s a training/validation/test dataset)
**dataset_kwargs (Any) – Optional dataset arguments for image transformation, value_range, splitting etc.
- download_and_prepare_dataset()
Downloads the MNIST digit data so that on-the-fly generation can take place.
- max_acc = 0
- max_speed = 5
- min_acc = 0
- min_speed = 2
- n_seqs = None
- num_channels = 3
- num_digits = 2
- reset_rng()
Creates RNG-based generation helpers for the on-the-fly generation, re-setting the RNG.
- rng_seed = 4115