vp_suite.datasets.caltech_pedestrian

class CaltechPedestrianDataset(split, **dataset_kwargs)

Bases: vp_suite.base.base_dataset.VPDataset

Dataset class for the dataset “Caltech Pedestrian”, as firstly encountered in “Pedestrian Detection: A Benchmark” by Dollár et al. (http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/files/CVPR09pedestrians.pdf).

Each sequence shows a short clip of ‘driving through regular traffic in an urban environment’.

ACTION_SIZE: int = 0

The size of the action vector per frame (If the dataset provides no actions, this value is 0).

DATASET_FRAME_SHAPE: (<class 'int'>, <class 'int'>, <class 'int'>) = (480, 640, 3)

Shape of a single frame in the dataset (height, width, channels).

DEFAULT_DATA_DIR: pathlib.Path = PosixPath('/home/runner/work/vp-suite/vp-suite/vp-suite-data/data/caltech_pedestrian')

The default save location of the dataset files.

FPS = 30

Frames per second.

IS_DOWNLOADABLE: str = 'Yes'

A string identifying whether the dataset can be (freely) downloaded.

MIN_SEQ_LEN: int = 568

Minimum number of frames across all sequences (1322 in 2nd-shortest, 2175 in longest)

NAME: str = 'Caltech Pedestrian'

The dataset’s name.

REFERENCE: str = 'http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/'

The reference (publication) where the original dataset is introduced.

TEST_SETS = ['set06', 'set07', 'set08', 'set09', 'set10']

The official test sets.

TRAIN_VAL_SETS = ['set00', 'set01', 'set02', 'set03', 'set04', 'set05']

training and validation).

Type

The official training sets (here

VALID_SPLITS = ['train', 'val', 'test']

The valid arguments for specifying splits.

__init__(split, **dataset_kwargs)

Initializes the dataset loader by determining its split and extracting and processing all dataset attributes from the parameters given in dataset_kwargs.

Parameters
  • split (str) – The dataset’s split identifier (i.e. whether it’s a training/validation/test dataset)

  • **dataset_kwargs (Any) – Optional dataset arguments for image transformation, value_range, splitting etc.

classmethod download_and_prepare_dataset()

Downloads the specific dataset, prepares it for the video prediction task (if needed) and stores it in a default location in the ‘data/’ folder. Implemented by the derived dataset classes.

train_to_val_ratio: float = 0.9

The ratio of files that will be training data (rest will be validation data). For bigger datasets, this ratio can be set closer to 1.