vp_suite.datasets.human36m

class Human36MDataset(split, **dataset_kwargs)

Bases: vp_suite.base.base_dataset.VPDataset

Dataset class for the Videos of the dataset “Human 3.6M”, as encountered in “Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments” by Ionescu et al. (http://vision.imar.ro/human3.6m/pami-h36m.pdf).

Each sequence depicts a human actor in a room equipped with different cameras and sensors. The actor is one of several different scenarios such as “Discussion”, “Sitting” or “Smoking”.

ACTION_SIZE: int = 0

The size of the action vector per frame (If the dataset provides no actions, this value is 0).

ALL_SCENARIOS = ['Directions', 'Discussion', 'Eating', 'Greeting', 'Phoning', 'Photo', 'Posing', 'Purchases', 'Sitting', 'SittingDown', 'Smoking', 'TakingPhoto', 'Waiting', 'WalkDog', 'WalkTogether', 'Walking', 'WalkingDog']

All recorded scenarios of the dataset.

DATASET_FRAME_SHAPE: (<class 'int'>, <class 'int'>, <class 'int'>) = (1000, 1000, 3)

For Human 3.6M, some sequences come in a shape of (1002, 1000, 3). They’re resized during loading.

DEFAULT_DATA_DIR: pathlib.Path = PosixPath('/home/runner/work/vp-suite/vp-suite/vp-suite-data/data/human36m')

The default save location of the dataset files.

FPS = 50

Frames per Second.

IS_DOWNLOADABLE: str = 'With Registered Account'

A string identifying whether the dataset can be (freely) downloaded.

MIN_SEQ_LEN: int = 994

Minimum number of frames across all sequences (6349 in longest).

NAME: str = 'Human 3.6M'

The dataset’s name.

REFERENCE: str = 'http://vision.imar.ro/human3.6m/description.php'

The reference (publication) where the original dataset is introduced.

SKIP_FIRST_N = 25

Some of the sequences start with a bit of idling from the actor. Therefore, the first few frames of each sequence are discarded.

VALID_SPLITS = ['train', 'val', 'test']

The valid arguments for specifying splits.

__init__(split, **dataset_kwargs)

Initializes the dataset loader by determining its split and extracting and processing all dataset attributes from the parameters given in dataset_kwargs.

Parameters
  • split (str) – The dataset’s split identifier (i.e. whether it’s a training/validation/test dataset)

  • **dataset_kwargs (Any) – Optional dataset arguments for image transformation, value_range, splitting etc.

classmethod download_and_prepare_dataset()

Downloads the specific dataset, prepares it for the video prediction task (if needed) and stores it in a default location in the ‘data/’ folder. Implemented by the derived dataset classes.

scenarios = None

Scenarios chosen for the current dataset instance (defaults to self.ALL_SCENARIOS)

train_to_val_ratio: float = 0.96

The ratio of files that will be training data (rest will be validation data). For bigger datasets, this ratio can be set closer to 1.