vp_suite.datasets.kitti_raw
- class KITTIRawDataset(split, **dataset_kwargs)
Bases:
vp_suite.base.base_dataset.VPDataset
Dataset class for the “raw data” regime of the “KITTI Vision Benchmark Suite”, as described in “Vision meets Robotics: The KITTI Dataset” by Geiger et al. (http://www.cvlibs.net/publications/Geiger2013IJRR.pdf).
Each sequence shows a short clip of ‘driving around the mid-size city of Karlsruhe, in rural areas and on highways’.
- ACTION_SIZE: int = 0
The size of the action vector per frame (If the dataset provides no actions, this value is 0).
- AVAILABLE_CAMERAS = ['image_00', 'image_01', 'image_02', 'image_03']
[greyscale_left, greyscale_right, color_left, color_right].
- Type
Available cameras
- DATASET_FRAME_SHAPE: (<class 'int'>, <class 'int'>, <class 'int'>) = (375, 1242, 3)
Shape of a single frame in the dataset (height, width, channels).
- DEFAULT_DATA_DIR: pathlib.Path = PosixPath('/home/runner/work/vp-suite/vp-suite/vp-suite-data/data/kitti_raw')
The default save location of the dataset files.
- FPS = 10
Frames per Second.
- IS_DOWNLOADABLE: str = 'With Registered Account'
A string identifying whether the dataset can be (freely) downloaded.
- REFERENCE: str = 'http://www.cvlibs.net/datasets/kitti/raw_data.php'
The reference (publication) where the original dataset is introduced.
- VALID_SPLITS = ['train', 'val', 'test']
The valid arguments for specifying splits.
- __init__(split, **dataset_kwargs)
Initializes the dataset loader by determining its split and extracting and processing all dataset attributes from the parameters given in dataset_kwargs.
- Parameters
split (str) – The dataset’s split identifier (i.e. whether it’s a training/validation/test dataset)
**dataset_kwargs (Any) – Optional dataset arguments for image transformation, value_range, splitting etc.
- camera = 'image_02'
Chosen camera, can be set to any of the AVAILABLE_CAMERAS.
- classmethod download_and_prepare_dataset()
Downloads the specific dataset, prepares it for the video prediction task (if needed) and stores it in a default location in the ‘data/’ folder. Implemented by the derived dataset classes.
- train_to_val_ratio: float = 0.9
The ratio of files that will be training data (rest will be validation data). For bigger datasets, this ratio can be set closer to 1.
- trainval_test_seed = 1234
The random seed used to separate training/validation and testing data.
- trainval_to_test_ratio = 0.8
The ratio of files that will be training/validation data (rest will be test data).